Infinite dimensional compressed sensing from anisotropic measurements

نویسندگان

  • Giovanni S. Alberti
  • Matteo Santacesaria
چکیده

In this paper, we consider a compressed sensing problem in which both the measurement and the sparsifying systems are assumed to be frames (not necessarily tight) of the underlying Hilbert space of signals, which may be finite or infinite dimensional. The main result gives explicit bounds on the number of measurements in order to achieve stable recovery, which depends on the mutual coherence of the two systems. As a simple corollary, we prove the efficiency of non-uniform sampling strategies in cases when the two systems are not incoherent, but only asymptotically incoherent, as with the recovery of wavelet coefficients from Fourier samples. This general framework finds applications to several inverse problems in partial differential equations, in which the standard assumptions of compressed sensing are not satisfied: several examples are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized sampling: stable reconstructions, inverse problems and compressed sensing over the continuum

The purpose of this paper is to report on recent approaches to reconstruction problems based on analog, or in other words, infinite-dimensional, image and signal models. We describe three main contributions to this problem. First, linear reconstructions from sampled measurements via so-called generalized sampling (GS). Second, the extension of generalized sampling to inverse and ill-posed probl...

متن کامل

Near-optimal compressed sensing guarantees for anisotropic and isotropic total variation minimization

Consider the problem of reconstructing a multidimensional signal from partial information, as in the setting of compressed sensing. Without any additional assumptions, this problem is ill-posed. However, for signals such as natural images or movies, the minimal total variation estimate consistent with the measurements often produces a good approximation to the underlying signal, even if the num...

متن کامل

A Block-Wise random sampling approach: Compressed sensing problem

The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...

متن کامل

Compressed sensing in Hilbert spaces

In many linear inverse problems, we want to estimate an unknown vector belonging to a high-dimensional (or infinite-dimensional) space from few linear measurements. To overcome the ill-posed nature of such problems, we use a low-dimension assumption on the unknown vector: it belongs to a low-dimensional model set. The question of whether it is possible to recover such an unknown vector from few...

متن کامل

Compressed sensing signal models - to infinity and beyond?

Compressed sensing is an emerging signal acquisition technique that enables signals to be sampled well below the Nyquist rate, given a finite dimensional signal with a sparse representation in some orthonormal basis. In fact, sparsity in an orthonormal basis is only one possible signal model that allows for sampling strategies below the Nyquist rate. We discuss some recent results for more gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1710.11093  شماره 

صفحات  -

تاریخ انتشار 2017